
Numerals
John Monash Science School
Co-curricular term two 2022

Tyson Jones
tyson.jones.input@gmail.com

Contents

1 Foreward 2

2 Integers 3
2.1 Base 10 . 3
2.2 Base B . 5
2.3 Examples . 9
2.4 Combinations . 11
2.5 Extensions . 14

3 Decimals 16
3.1 Dot point . 17
3.2 Rounding error . 18
3.3 Floating point . 21
3.4 Extensions . 26

4 Review questions 27

5 Appendices 28

6 Review answers 31

1

1 Foreward

These class notes are about numerals; methods of notating numbers through
squiggles and marks on a page. This innocuous topic reaches into all sorts
of insidious areas like combinatorics, information theory, digital logic and bike
theft.

These notes were tailored for precocious year ten Australian highschoolers. How-
ever, almost no prior maths is assumed (relevant topics are reviewed in Sec. 5),
and the contents may prove especially elucidating for programmers and under-
graduate computer scientists. If counting excites you, strap yourself in.

I finally warn that the ramblings herein are highly stylised, joke-riddled and
strikingly tone-deaf, and surveyed at the reader’s discretion. No offence is in-
tended to the following parties:

• Late antiquity Indian mathematicians

• Chinese accountants

• Donald Knuth

• The Yuki, Mayan, and Sumerian peoples

• The likes of programmers

• Combination lock manufacturers and their sham-fuelled industry

• Europe

• Those presently incarcerated

• American libertarians

• Authors of the IEEE 754 technical standard

• The Australian teaching pay commission

• Victims of Russian occupation

• Subscribers to the New Testament

• Apple fans

• BIC (don’t sue)

2

2 Integers

2.1 Base 10

Natural numbers are all around us. My left hand has as many fingernails as
there are dots below:

Due to a gnawing incident, my right foot features this many toes:

Sixth century Indians were sick of counting their missing toes in this cumbersome
manner, so agreed upon these symbols:

0 = 5 =

1 = 6 =

2 = 7 =

3 = 8 =

4 = 9 =

They adopted ten unique numeral symbols, and the Indian embassy have since
ignored my emails proposing additional symbols

= =

We are ergo stuck with a “base ” system, or in its own language, “base
ten”. Though it seems a comfortable choice of base for ten-fingered humans,
the Mayans decided on twenty (the number of fingers and toes), the Yuki used
eight (the number of spaces between fingers), and the Babylonians created sixty
symbols before anybody could stop them.

The Indians soon realised ten numbers were too few; they could not denote the
number of sunrises in a season, nor the number of instagram likes on a very pop-
ular Bhimbetka painting. Since their numeral symbol designer had gone missing
in Mesopotamia, the Indians developed the Hindu-Arabic “positional notation”
to denote big numbers using multiple of their existing numeral symbols, written
side-by-side. For example,

153 =

3

In this notation, the symbols or “digits” are read right-to-left, have their values
multiplied with an increasingly large number, and are finally summed. The
sequence 153 is interpreted as number

153 = 3× 100 + 5× 101 + 1× 102

I wrote that compactly by making use of your existing understanding of symbols
+ and ×, and of the numerical value ten = 10, and of the power notation
baseexponent. To avoid all that, I could verbosely write

153 = 3 added to

5 of (my number of fingers), added to

1 of (my number of fingers of (my number of fingers))

The position notation is convenient because the represented numbers can be-
come very big while their numerals remain concise.

2 =

22 =

222 =

The largest four-digit base-10 number is 9999. It is the choice of the maximum
value symbol (9) for every digit. What is the value of the largest k-digit base-10
number, where k ∈ N is unspecified?

We should also make mention here of negative numbers, later proving indis-
pensable by Indian economists when quantifying the contributions of the British
empire. While expressions like

5− 2 = 3

were okay, those like
2− 5 = ??

really knocked the socks off of third century Greek mathematicians, who had
neglected to read the negative second century Chinese literature. The spooky
negative variant of an integer x ∈ N is defined as that resulting from subtraction
from zero:

0− x = −x

The “−” prefix of a negative numeral is still arbitrary notation however, and
history played with many:

−5 = 5̄ =

5

= �5 = 5

Negative numbers are very important for denoting very small positive numbers,
as we will later see.

4

2.2 Base B

We are so well practised at using a base ten number system that we may mistake
it as innate. But it is arbitrary, and no more legitimate than the base four
system I hereby propose:

=

=

=

=

We use subscripts to indicate the base of the denoted number, in case of am-
biguity. For instance, 10110 6= 1012 = 510. To defer insanity, the subscripted
numbers are always encoded in base-10. In our scheme,

4 = 010, 4 = 110 4 = 210 4 = 310

Do not bother nominating this scheme to the Indian embassy, for they have
cemented their eggs into the base ten basket. But we can anyway steal their
positional notation to denote big numbers:

4 = × 40 + × 41 + × 42 + × 43

= 1× 40 + 0× 41 + 3× 42 + 2× 43

= 18110

Counting up from zero follows the same procedure as counting in base ten: We
increment the right-most (“least significant”) digit. If it surpasses its maximum
value symbol (“overflows”), it is reset to its minimum value symbol, and the
next digit is incremented similarly (a “carry”).

= 0

= 1

= 2

= 3

= 4

= 5

= 6

= 7

= 8

= 9

= 10

= 11

= 12

= 13

= 14

= 15

= 16

= 17

= 18

= 19

= 20

= 21

= 22

= 23

= 24

= 25

= 26

= 27

= 28

= 29

= 30

= 31

...

5

The largest three-digit number in our base-four scheme is

4 = 3× 40 + 3× 41 + 3× 42

= 6310

But we didn’t need to evaluate this - we could have immediately written down
the answer. Recognise that the next integer...

+ =

is three zeros () and a single one (), and ergo has has value

= 1× 43

The largest three-digit number is therefore one fewer than the smallest four-digit
number:

4 = 43 − 1

= 6310

Let us now consider a general base B number system, where B itself is an
unspecified natural number (B ∈ N). Such a system must employ B unique
numeral symbols (to denote values 0, 1, . . . , B − 1) but we will leave them
unspecified too. In this way, we can study number systems of all bases at
once, including those natural to eleven fingered aliens (B = 11) and ninety-six
tentacled Shima monster octopi (B = 96). We even describe the hexadecimal
system (B = 16) adopted by the ghastliest beast of them all: the unwashed
programmer.

Let variables a, b, c, d ∈ N represent the individual digits (in base B, increasing
significance) of a particular four-digit number x ∈ N.

xB = [d][c][b][a]

Note that algebra is agnostic to the base of the numbers it abstracts, so we can
write expressions like x + y without writing the base subscript. However, the
above equation defines a, b, c, d as the specific digits of x in base B, hence the
subscript. To be valid digits (which have not overflowed), they satisfy

0 ≤ a < B 0 ≤ b < B

0 ≤ c < B 0 ≤ d < B

This is compactly written with an integer interval

a, b, c, d ∈ [0..B)

Evaluating x (given base-B digits a, b, c, d) as a base-10 number according to
the positional convention is as before:

x10 = a×B0 + b×B1 + c×B2 + d×B3

Consider how the following specific numbers are represented in base B:

6

•
x = 010

Representing zero is trivial; every digit has the minimum value symbol
denoting zero, d = c = b = a = 0B .

∴ xB = [0][0][0][0]

•
x = B − 110

This happens to be the maximum value of a single digit, so only the least
significant digit is non-zero:

xB = [0][0][0][B − 1]

•
x = B

Since this satisfies x ≥ B (equals or exceeds the base), one or more non-
least-significant digits in xB must be non-zero.

xB = [0][0][1][0]

•
x = the biggest four-digit number representable

This is the number whereby every digit has its maximum value symbol
(analogous to 999910). Ergo

xB = [B − 1][B − 1][B − 1][B − 1]

∴ x = (B − 1)×B0 + (B − 1)×B1 + (B − 1)×B2 + (B − 1)×B3

= (B − 1)(B0 +B1 +B2 +B3)

Though once again, we should instead realise x is one less than the smallest
five-digit number, so conclude

xB = [1][0][0][0][0]− [0][0][0][0][1]

∴ x = B5 − 1

•
x = the biggest k-digit number representable

Using the same trick, we realise x is one less than the smallest (k+1)-digit
number, which is a one followed by k zeroes. Hence

x = Bk − 1

7

The final example above is profound. It shows that under the positional nota-
tion, the range of representable numbers grows exponentially with the number
of digits.

range of base-B k-digit numeral = Bk

This is why our numerals are so concise; we need only a logarithmic number of
digits to denote a given integer x ∈ N.

number of base-B digits = 1 + blogB(x)c

The notation bzc is the floor of z, merely rounding z down to the next integer.
Logarithms grow as slowly as novel coronaviruses proliferate rapidly in unvac-
cinated communities.

Atoms in the universe

Atoms in 12g of 12C

Fingers on my hand

Hotdogs I can fit in my mouth
Days in a year

Braincells in my brain

Braincells in a healthy brain

1

2
3

6

11

24

80

Number

D
ig
it
s
in
ba
se
-
10
nu
m
er
al

Of course, all of these numerals can be prepended with zero to technically
increase their number of digits ad nauseam.

13 = 013 = 0013 = 0000000000000013

We usually agree not to do so. The exponentially expressive positional notation
enables us to write down all kinds of wonderfully big numbers without exhaust-
ing ourselves nor running out of ink. We must thank forward thinking pioneers
like tenth century Abu’l-Hasan al-Uqlidisi for foiling the BIC capitalist agenda.

8

2.3 Examples

I hope to have convinced you that the choices of base and symbols of a number
system are arbitrary. Yet you will find that your friends don’t show up when
you schedule them to meet at “amogus ceiling-fan baguette pretzel” o-clock.
Humans are particular about their numerals and recognise only a few with any
real seriousness, recycling the Hindu-Arabic numeral symbols and the Anglo-
Saxon futhorc runic alphabet.

For instance, the B = 1 “unary” tally mark scheme:

= 110

= 210

= 310

= 410

= 510

= 610

= 710

= 810

= 910

= 1010

While verbose, tally marks are useful for incrementing or counting in settings
where the previous numerals cannot be erased, such as scratches upon a prison
cell wall using Joey-the-rat’s canine tooth. Notice there is no established symbol
for zero; thankfully nobody starts counting until the shower experience on day
two.

The hexadecimal system (B = 16) extends the base-10 numerals with symbols
A to F .

016 = 010 516 = 510 A16 = 1010 F16 = 1510

116 = 110 616 = 610 B16 = 1110 1016 = 1610

216 = 210 716 = 710 C16 = 1210
.
.
.

316 = 310 816 = 810 D16 = 1310 AA16 = 10× 16 + 10 = 17010

416 = 410 916 = 910 E16 = 1410 FF16 = 15× 16 + 15 = 25510

Hexadecimal numerals are used both by assembly programmers to denote the
possible values of a nibble (four bits) and by web programmers to encode colours
in order to confuse graphic artists. Since a “hex-colour” is specified as a six digit
base-16 numeral, we know there are only 166 unique colours no matter what the
computer monitor companies try to sell us.

And a bit (a 0 or 1) is itself a single digit of a binary (B = 2) numeral.

0002 = 010

0012 = 110

0102 = 210

0112 = 310

1002 = 410

9

Binary is special because it is the minimum integer base which can express
exponentially many numbers. By having only two symbols, it is very naturally
instantiated in physical systems, especially dichotomous ones. For example, by
labelling the state of a lightswitch...

= 02 = 12

we can count at the expense of mum’s electricity bill.

= 100112

= 1× 20 + 1× 21 + 1× 24

= 1910

This is why the modern digital computer employs a binary encoding; it is easy
to reliably produce and interpret two physically distinct states, like whether or
not a memory cell contains a non-negligible electric charge. Binary numerals
also allow us to repurpose the mathematical field of Boolean algebra in order
to evaluate arithmetic expressions. The below electric circuit1 uses electronic
components which can perform logic gates...

= AND = XOR

in order to evaluate the product (with bits [C3][C2][C1][C0]) of two input binary
numbers (with bits/digits [A1][A0] and [B1][B0]).

Understanding that a computer is ultimately representing its numbers in binary
allows a programmer to make use of all sorts of “bit-twiddling tricks”.

(26× 23)10 = 000110102 � 310 (� means “left shift bits”)

= 110100002

= 20810
1This is a actually just an abstract logic diagram but is trivial to translate into an electric

circuit due to convenient electrical phenomena like parallel currents.

10

2.4 Combinations

I gave late antiquity mathematicians a lot of credit for the positional notation
whereby

. . . [d][c][b][a]B = a+ bB + cB2 + dB3 + . . .

I will now demonstrate it is a natural notation admitted by combinatorics, and
is much better than some alternatives I just made up like

8(4) 5(1) 2(0) = 8005210

2
43 = 32410

= 30812 = 44010

Consider a combination lock with four dials, each containing seven unique sym-
bols.

�

⊗

Imagine that this whimsical lock secures a stranger’s bicycle which we intend
to steal despite leaving our bolt cutters in our other trousers. So we test a few
random combinations, hoping to guess the unlock sequence.

�

⊗

�

⊗

�

⊗

No luck: the lock remains fastened, and some onlookers glance suspiciously in
our direction. Perhaps we can hurriedly try all combinations in succession before

11

the bobbies show up. Exactly how many combinations are possible? Let’s work
it out (and quickly).

To try a combination, we must decide the position of each dial in-turn. Let us
start with the rightmost dial. There are seven choices.

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Now introduce the next adjacent dial. For each position of the rightmost dial,
we can independently set the new adjacent dial to any of its seven positions.
Start at its first value () while trying each of the seven rightmost dial values.

⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Increment the adjacent dial to , reset the rightmost dial to , and try again.

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

12

We can repeat this process for every of the seven values of the adjacent dial.
There are hence 7× 7 = 49 possible combinations of the two dials. Introducing
yet another dial means each of these 49 two-dial combinations can be the suffix
of a three-dial combination, where the new dial is set to any of its seven values.
We continue, realising that the introduction of a new dial of B = 7 symbols
increases the total number of combinations by a factor B. The full four-dial
lock ergo has B4 = 2401 possible combinations.

Trying one combination every second, this means it would take 40 minutes
to systematically exhaust all possible combinations and yoink that beautiful
bike. But the more important lesson here is the natural ordering of the tested
combinations. Notice the actual symbols etched upon the lock dials were of
no importance. They served only to distinguish the positions possible of an
individual dial. Since the dials have a strict ordering that cannot be confused
(we cannot accidentally physically swap two dials during our tampering), they
may as well use the same symbol set:

⊗ ⊗ ⊗ ⊗

Nothing is changed. Yet, an analogy between these dials and numerals is form-
ing. If we associate each symbol with its index on the dial...

= 0 = 1 = 2 = 3 = 4 = 5 ⊗ = 6

then a given lock combination is merely a numeral in a base-7 number scheme!

⊗

⊗

⊗

⊗ = 30467 = 106310

13

The analogy is perfectly valid for our beloved base-10 numeral system.

9
8
7
6
5
4
3
2
1
0

9
8
7
6
5
4
3
2
1
0

9
8
7
6
5
4
3
2
1
0

9
8
7
6
5
4
3
2
1
0

= 321010

We can now appreciate that the positional notation, whereby the nth digit (from
the right, indexing from 0) of a base-B numeral has prefactor Bn . . .

0001B = B0

0010B = B1

0100B = B2

1000B = B3

...

is a very natural notation. This factor is the number of sub-combinations pos-
sible of the digits/dials to its right.

The analogy between dials of a combination lock and digits of a numeral is
simple and apparent, but combination locks do not grow on trees and did not
appear in Mesopotamia until the thirteenth century. Why am I making such
a fuss about them? Because using combinatorics to denote numerals achieves
“closure”: every combination of digits you write down forms a valid numeral,
interpretable as a valid number. For instance, select any number of the rightmost
lock dial symbols (allowing duplicates) and write them down in any order. The
result is always a valid numeral.

= 3117

⊗ ⊗ ⊗ ⊗ ⊗ = 666667

⊗ = 01234567

2.5 Extensions

There are many more ways to denote natural numbers, some better than those
we saw above for certain situations.

14

• Scientific notation is useful when only the left-most digits of a large num-
ber are non-zero.

5× 109 = 5000000000

• Tetration is an instance of Donald Knuth’s up-arrow notation, useful for
denoting huge powers of a base.

B ↑↑ 4 = BB
BB

• Factorial base (also known as factoradic numerals) is (apparently) useful
in combinatorics and cryptography, and replaces the nth digit value in
positional notation from Bn to (n+ 1)!

1 = 1!

10 = 2!

100 = 3!

1000 = 4!

...

Each digit is still restricted to be in 0-9, and a general numeral is evaluated
as

. . . [d][c][b][a]! = a× 1! + b× 2! + c× 3! + d× 4! + . . .

= a+ 2 b+ 6 c+ 24 d

For example,

244020! = 0× 1! + 2× 2! + 0× 3! + 4× 4! + 4× 5! + 2× 6!

= 202010

Given the same digits, do you think factorial-base or base-10 can denote
a larger number? You may be tricked by looking at some examples...

99! = 2710

9, 999! = 29710

999, 999, 999! = 3, 682, 01710

It looks like base-10 is winning, because the maximum k-digit factorial-
base numerals (for k above) require fewer than k digits when expressed in
base-10. This may puzzle you if you subscribe to the doctrine that “fac-
torials grow faster than exponentials”, meaning n! grows faster than Bn.
Why aren’t we seeing that? Because we are not looking at sufficiently big
numbers! It turns out that for B = 10, the factorial becomes bigger than
the exponential for n ≥ 25.

15

base ten (9…910)

factorial base (9…9!)

5 10 15 20 25 30

106

1016

1026

Number of digits

M
ax
im
um

nu
m
er
al
va
lu
e

Lo!

999, 999, 999, 999, 999, 999, 999, 999! = 5, 827, 302, 643, 226, 110, 604, 462, 81710

• Chinese numerals avoid a big vulnerability in positional notation. Imagine
that after a night of heavy drinking hydrating responsibly, you hand your
friend an I Owe You note for $45 and head to bed. They arrive the next
morning to collect their debt, which has miraculously grown to $45, 000.
It is no wonder you cannot remember spending so much of their money,
they assert, since you drank ten thousand times the lethal limit of vodka
cranberry juice! You repay your debt, not noticing your friend’s hasty
handwriting, and vow to never drink get carried away in the juice aisle
again.

The positional notation allows mischievous cretin to append additional
digits to a written number in order to increase its value.

i o u $45, 000

Fraud of this kind is rampant in neoliberal hellscapes developed countries
with tipping cultures and paper bills. Chinese financial numerals avoid
this - but I cannot understand why, so ask your Chinese friends!

3 Decimals

We now know how to denote any integer using a concise base-B positional
numeral. For example

1011111011101111011010012 = 1251312910 = BEEF6916

But what about decimal or non-integer numbers? How does one write down
the portion of two fish divided between 5000 starving pilgrims, or the modest
hourly wage of a meek JMSS co-curricular teacher?

16

3.1 Dot point

We can introduce a decimal separator to the positional notation in order to
denote rational numbers. The Scottish fancied the dot point

12 + 5÷ 10 = 12.5

while much of Europe sinned with an awful comma

= 12, 5

The digits after the decimal separator correspond to negative powers of the base.

153.4810 = 1× 102 + 5× 101 + 3× 100 + 4× 10−1 + 8× 10−2

These are the natural continuation of the powers. In fact, the role of the decimal
separator is simply to denote which digit corresponds to the zero power.

3 . 7 10

100 10−1

Of course one can think up all kinds of crappier alternatives.

39.01 =
3901

zero power

= 3901(−2)

Negative powers after a decimal separator is not specific to base ten. The
convention holds for a general base B ∈ N.

0.1B = B−1

0.01B = B−2

0.001B = B−3

...

A general base B decimal numeral denotes

. . . [c][b][a].[α][β][γ]B . . . = · · ·+ cB2 + bB1 + aB0 + αB−1 + β B−2 + γ B−3 + . . .

This is the recipe for interpreting decimal numerals that you have likely been
unknowingly using for your entire life! Just like for integer numerals, all variables
in this decimal numeral are restricted to 0 ≤ a, b, c, α, β, γ ≤ B − 1.

Let’s consider the numbers we can denote using strictly three decimal digits in
base B.

xB = 0.[α][β][γ]B α, β, γ ∈ [0..B)

Here are some important things to notice.

17

• The smallest (non-zero) number is x = B−3, corresponding to α = β = 0
and γ = 1.

0.[0][0][1]B

• The next smallest number is x = 2 × B−3, achieved by incrementing
the right-most digit. The right-most digit can be repeatedly incremented
(adding value B−3) until it reaches its maximum:

0.[0][0][B − 1]B = (B − 1)B−3.

The next representable number...

0.[0][1][0]B = B−2

= (B − 1)B−3 +B−3

is again just an increment of B−3. The gap between each representable
number is always B−3, even when overflow occurs!

Generally, the gap between each number representable by k decimal base-
B digits is the smallest non-zero number, B−k. This is consistent with the
positional notation for integers in the previous chapter, where the smallest
non-zero number was simply B0 = 1.

• The biggest number is achieved when the digits are set to their maximum
α = β = γ = B − 1. In that case

max xB = 0.[B − 1][B − 1][B − 1]

max x = (B − 1)B−1 + (B − 1)B−2 + (B − 1)B−3

Once again, we do not need to evaluate this. We know that the next
number (if we allowed the non-decimal digits to change) is simply

1.[0][0][0]B = 1×B0 = 1

Since the gap between representable numbers is fixed at B−3, we know

max x = 1−B−3

3.2 Rounding error

How should a computer store a decimal number? We saw that binary (i.e. base
B = 2 positional notation) worked well for storing integers. Using k binary digits
(“bits”), a computer can represent all integers between 0 and 2k− 1 (inclusive).
We could simply slap on another set of m bits to store the negative-power digits.

Let’s build the world’s worst accounting computer to process my finances. We
will dedicate k = m = 4 bits to represent a single decimal number, where the 4
rightmost bits correspond to the negative powers of two.

0000 0000
2

= 0.010

18

The bits are ordered in the usual positional notation.

0010 01012 = 20 + 2−2 + 2−4 = 2.312510

The smallest non-zero number is B−m = 2−4.

0000 00012 = 0.062510

That’s a pretty pathetic minimum but we’ll continue. The next smallest repre-
sentable number is

0000 00102 = 0.12510

How would this computer store my total teaching earnings, about $12.10?

It simply cannot! There is no assignment of the 8 bits which will encode the
number 12.1010. The gap between representable decimals (the “machine ep-
silon”) is ε = B−m = 0.062510. The closest number to my true earnings that
the computer can store is

1100 00102 = 12.12510

Just through trying to store the number, the computer will overestimate my
total earnings by 2.5 cents. This is called rounding error, since the true number
was rounded to the nearest representable number. The crummy computer can
only store the below decimal numbers (integer factors of ε):

.0 .0625 .125 .1875 .25 .3125 .375 .4375 .5 .5625 .625 .6875 .75 .8125 .875 .9375

An error smaller than ε may not seem a huge problem; 2.5 cents won’t even buy
my daily lunch of a single gummy bear, especially not after the inflation of World
War 3. But when our computer performs calculations on these 8 bit decimals,
things will go downhill faster than the credibility of the Putin government.

An arithmetic calculation in our computer’s CPU will take in a binary decimal,
and output a binary decimal. We may ask it to compute

210 ÷ 1010

which gets encoded as

0010 00002 ÷ 1010 00002

As regrettably intelligent humans, we know the answer is 0.210. But this number
cannot be represented in our binary scheme, so the CPU rounds it to the closest
binary number and proudly outputs:

0000 00112 = 0.187510

The maximum error of this single calculation is always bounded by the machine
epsilon ε = B−m = 2−4 = 0.062510, because this is the gap between repre-
sentable numbers. But now imagine that the output is being fed into another

19

calculation, like multiplication with the number 8.937510 = 1000 11112. The
correct full calculation is

(210 ÷ 1010) × 8.937510 = 1.787510.

The closest representable binary number to this happens to be

0001 11012 = 1.812510

But our lousy computer won’t even output that! It will perform

x = (0010 00002 ÷ 1010 00002) × 1000 11112

= (0000 00112) × 1000 11112 (rounded)

= 0000 10112 (rounded)

= 1.687510

The error between its output and the true value is 0.110 which exceeds the
machine epsilon ε. This is because each intermediate step of the calculation
must be stored as a binary number and ergo experience rounding error. So the
computer actually multiplied number 0.187510 (instead of 0.210) with 8.937510,
which should yield erroneous result 1.6757810, but this is finally rounded to
binary-representable number 1.687510. Sequences of arithmetic operations com-
pound the rounding error. The longer the calculation, the progressively more
inaccurate the output becomes!

Holy smokes, computers SUCK! Everybody PANIC!

Woah there partner. We were imagining a lousy machine using only m = 4
decimal bits. The machine epsilon vanishes exponentially quickly as ε = 2−m.
Your computer running Python likely uses m = 64 decimal bits, so it’s epsilon
is

ε = 2−64 ≈ 5.42101× 10−20

That’s so tiny that we probably do not even see the effects of rounding errors
in our daily uses. And surely not with simple numbers like 0.110 and 0.310 even
though they do not have exact binary representations, right? Let’s reassure
ourselves and ask Python on your computer to evaluate

x = 0.110 + 0.110 + 0.110 − 0.310

It outputs:
5.551115123125783× 10−17

Your computer believes x 6= 0. A belief like that can easily blow up a spacecraft
full of astronauts.

Holy smokes, computers definitely DO SUCK! Everybody PANIC!

20

Let’s not be too critical though, since you yourself have rounding error. You
have likely before committed:

210 ÷ 310 ≈ 0.66666666710

It just so happens that 2/3 cannot be expressed in a finite base ten numeral.
Any choice of base B will still restrict a k digit decimal to a finite set of numbers
(Bk of them), despite the existence of uncountably infinitely many real numbers
in between. In fact, you cannot write down the ridiculously extreme majority of
all existing numbers. One should endeavour to live their life peacefully despite
this.

3.3 Floating point

Your computer is at least doing something a bit more clever than the binary
decimal system I described above. Our imagined 8-bit computer with 4 decimal
bits could only store numbers as small as 2−4, but nothing smaller (besides
zero).

0000 00012 = 0.062510

If this computer was performing a series of arithmetic calculations, and an inter-
mediate operation produced a number smaller than half of the above minimum
number, it would round to zero. This would make subsequent multiplication
with any other number zero, even if the other number is huge. As such, the
whole calculation would likely spit out an absurdly incorrect number. Hav-
ing such an unimpressive minimum decimal number makes our machine almost
useless. To support smaller numbers, we would need to add more decimal bits.

Your actual computer probably represents numbers using 64 bits. If all of them
were decimal bits then our binary decimal system could store a number as small
as

000 . . . 00012 = 2−64 ≈ 5.4× 10−20

That’s certainly small, but nowhere near as small as the Planck constant

~ ≈ 1.05× 10−34

which quantum physicists have no problem loudly multiplying away in their
MacBooks at the back of Starbucks. How has Apple achieved this feat? How
can a computer store a number smaller than 2−64 while using no more than 64
bits? Or in other words, how can one denote a decimal as small as 2−110 using
fewer than 110 bits?

The same way I just did! :^)
Scientific notation allows us to avoid nonsense like this:

me ≈ 0.0000000000000000000000000016710 = 1.67× 10−27

21

or like this:

NA ≈ 602200000000000000000000.010 = 6.022× 1023

We do not waste precious digits on long prefixes or suffixes of zeros; we instead
shift the non-zero digits right up to the left and denote the size of the shift as
an exponent of the base. This compactifying trick works in any base.

0.0000001B = 1×B−7

1FA0000000.016 = (1.FA)16 × (169)10

1010000002 = (1.01)2 × (28)10

If we are working with a fixed specific base which we do not need to write down,
then all identifying information of a number in scientific notation is captured in
a handful of digits. The mass of an electron in kilograms (in base ten) is:

mantissa : 1.67

exponent : − 27

This is how your computer is encoding decimal numbers in binary. It is using
base-two scientific notation to represent the electron’s mass as

me ≈ 1.61510 × 2−89

and is storing it as two bit sequences.

mantissa : 1.100111012 (= 1.61328110)

exponent : − 10110012 (= −8910)

This encoding is called “floating point” because changing the stored exponent
has the effect of moving the decimal separator (the dot point) in the binary
numeral of the stored number. The dot point is “floating”:

1.011× 23 = 10.11× 22 = 101.1× 21

By convention however, the exponent is always chosen such that the dot point
comes after the first one-bit, like in the left example. This is called “normalisa-
tion”.

mantissa : 0.11002;

exponent : − 1002

mantissa : 1.10002;

exponent : − 1012

22

Normalisation means the first bit of the mantissa is not actually stored, because
it is always implicitly 1. We get to use that extra bit on the decimal digits, yay!
The mass of an electron can then be stored as in as few as 17 bits! (including
the signs + and −)

mantissa : + 1.100111012

exponent : − 10110012

Your computer is likely using the “IEEE 754 double-precision” 64-bit convention
where the number of bits in the mantissa is fixed at 52 (with an extra bit for its
sign, 0 = + and 1 = −), and the exponent uses 10 bits (also with an extra bit
for its sign2). The bit sequences are plopped right next to each other, like so:

Here is how our approximation to the electron mass would appear:

0 1 0001011001 1001110100

Let’s consider how to encode some specific numbers, when we use m bits for the
mantissa, and p bits for the exponent, excluding the signs.

• What is the largest number our computer can store? It has the form

max x = + (largest mantissa)× 2+(largest exponent)

We are by now quite practised at this. The mantissa has an implicit 1.0
followed by m decimal digits all with value 1. Meanwhile the exponent is
the maximum integer of p digits.

max x = (1.11· · ·1112)× 2(111···1112)

=
(
1. + 1− 2−m

)
× 2(2

p−1)

=
(
2− 2−m

)
× 2(2

p−1)

For m = 52 and p = 10, this is about

max x ≈ 1.8× 10308

or a Googol cubed. Quite large; imagine every atom in our universe was
duplicated into its own entire universe. Then the same process happened
between all those combined atoms twice more. The unimaginable collec-
tion of atoms in the final ensemble of universes is about as large as this
number.

You can chuck such numbers into Python (with syntax 2.4E6 = 2.4×106)
to verify my claims.

2This is a lie to defer some nuance. What a nuisance those computer scientists have made
to my document structure.

23

>>> 1.13E308 + 0.2E308

1.33e+308

>>> 1.13E308 + 0.7E308

inf

• What is the smallest number (non-zero and positive) that our computer
can store? It has the form

min x = + (smallest mantissa)× 2−(largest exponent)

= + (1.000· · ·002)× 2−(111···1112)

= 2−(2
p−1)

The mantissa bits can all be set to zero, but the interpreted number is
still prefixed with an implicit 1, as per normalisation.

For m = 52 and p = 10, this is about

min x ≈ 1.1× 10−308

This is indeed what Python claims to us:

>>> import sys

>>> sys.float_info

sys.float_info(..., min=2.2250738585072014e-308, ...)

However Python can actually squeeze even smaller numbers out through
“denormalisation”. It simply relaxes the requirement and assumption
that the first mantissa digit is one, allowing it to be zero. The minimum
number in this ad-hoc encoding is

mindenorm x = + (smallest unnormalised mantissa)× 2−(largest exponent)

= + (0.000· · ·012)× 2−(111···1112)

=
(
2−m

)
× 2−(2

p−1)

Now we can play with “subnormal numbers” as small (substituting m = 52
and p = 10) as

mindenorm x ≈ 2.5× 10−324

though I pray you never have to.

>>> 3E-324

5e-324

>>> 2E-324

0.0

• How many unique floating-point numbers are representable? Since a num-
ber is ultimately encoded using 64 bits, we can immediately upperbound
it by the number of unique 64-bit sequences, i.e.

≤ 264

24

Are we counting any particular numbers twice?

The astute reader, having survived all that, may find themselves quite confused.
Something bugs them. They may ask: How can a normalised floating-point
system, wherein the first digit of the mantissa is always one, represent the
simplest number of them all; zero? How does it encode 0.010? Dear reader, it
cannot. All this time I have tortured you, and I must apologise. My sinister
personality has caused me to lie about an important nuance of the IEEE 754
double-precision standard, which I now remedy.

The exponent doesn’t really dedicate a bit to its sign. Instead, it offsets its 11-bit
values by 210 so that there is a unique zero encoded by sequence 011111111112.
Anything less than this is negative, and larger than this is positive. This per-
mits 211 unique exponents. However, the extreme values 000000000002 and
111111111112 are reserved to encode special values.

When the exponent is zero and the mantissa is zero, the encoded floating-point
number is zero.

0.010 = 0 00000000000 00

The mantissa is still signed, so there is a negative zero too. Neat huh?

−0.010 = 1 00000000000 00

>>> - 0.0

-0.0

When the exponent is zero but the mantissa digits are not all zero, the encoded
number is subnormal. The exponent implicitly becomes its minimum (−210) and
the mantissa will be assumed unnormalised (the first digit will not be assumed
1). This was Python’s trick for handling numbers smaller than 10−308.

(−0.13×10−323)10 ≈ −2−2
10−52 = 1 00000000000 0001

Finally, the other special value of the exponent encodes the whacky family of
invalid numbers, like infinity and NaN.

inf = 0 11111111111 00

NaN = 0 11111111111 1100001000000010000011000000111000000000100001000001

Yes indeed, this means there are 253 (four quadrillion) unique NaN types. Be
afraid programmers, be very afraid.

25

3.4 Extensions

We went a little off the rails about computers, but this chapter was really
about ways to write down decimal numerals. That is, how to leverage the great
success of the positional notation system for denoting integers, in order to denote
fractional quantities.

There are many more ways humans have devised to write down decimals, and
you’ve likely already met a few.

• Repeated numerals have all sorts of disputed syntax.

1

3
= 0.3̇ = 0.3 = 0.333 . . . ≈ 0.333333

They allows rational numbers with infinite but periodic decimal digits to
be compactly notated.

1

11
= 0.0̇9̇ = 0.09 ≈ 0.090909

3

7
= 0.4̇28571̇ = 0.428571 ≈ 0.428571428571428571

• Mixed numerals are composed of an integer and an adjacent proper frac-
tion.

9 3
4

They can represent any rational number concisely and finitely, but arith-
metic becomes a bit of a ballache.

• Complex numbers C are a whole new set of numbers beyond the scope of
this already hyper-distracted document. Those familiar may be interested
in Knuth’s Quater-imaginary base system, which is simply our beloved
positional notation with base B = 2i, and digits 0, 1, 2 and 3.

302.112i = 3 · (2 i)2 + 0 · (2 i)1 + 2 · (2 i)0 + 1 · (2 i)−1 + 1 · (2 i)−2

= −10.2510 − 0.510 i

Please direct all questions about practical applications to Donald Knuth.

26

4 Review questions

Got all that? Try these questions

1. What is 1250322227 when denoted in base 10?

2. How many digits would Avagadro’s constant have if written in base 6?
Hint: you don’t need to determine the numeral.

3. What is the result of
45A9F1216 × (164)10

when expressed in Hexadecimal?

4. An alien species uses the below symbols in their positional numeral system:

Ð

s

÷

¥

Ô

£

Î

u À

t ¡

¢

v

Õ

ñ
Ó

Ñ

Í

Their freaky alien telephone numbers are 5 digits long, and can contain any
of these symbols in any order. You wish to call your alien friend Sxlahmdog
but have forgotten their number, so you dial 5 random symbols. What
are the chances you dialled correctly?

5. Your call to Sxlahmdog has earned you a telephone bill for

Í¢¢Ôts (AUD)

You have no idea of the integer value of each symbol. What is the maxi-
mum possible value (in base 10) of this fee?

6. Consider a base-B decimal number composed of k digits (no scientific
notation). The decimal separator occurs after the second left-most digit.
What is the maximum value of this number?

7. Under the IEEE 754 double-precision standard (albeit with an explicit
sign bit for the exponent, given below in orange), what number (in base
ten) does the below bit sequence encode?

1 1 0011001100 110011

The solutions to these questions are at the bottom of this document. But have
a genuine attempt at before you look!

27

5 Appendices

• A “set” is a collection of numbers. Here is the set of my favourites:

S = {42, 101, 666, 42069}

Notation 42 ∈ S means “42 is an element of set S”.
Notation 7 /∈ S means “7 is not an element of set S”.
(get that stanky 7 outta here)

• The “natural numbers” (N) is the set of positive whole numbers including
zero.

N = {0, 1, 2, 3, 4, . . . }
Some pedants insist this set should exclude zero. Please direct them to
any of notations

N+ = N∗ = N>0 = N 6=0 = N1 = N \ {0}

• The “integers” (Z) contain all the natural numbers, and their negative
forms.

Z = { . . . − 4, −3, −2, −1, 0, 1, 2, 3, 4, . . . }

• The “reals” (R) contain every number you have ever seen3. It contains all
the integers (like 2 and 3), and every non-whole number in between them
(like 2.151942069).

2 ∈ R
2.151942069 ∈ R

π ∈ R

• The “rationals” (Q) contain only the real numbers which can be expressed
as fractions of integers:

a

b
where a, b ∈ Z

This obviously includes all integers.

−3 =
−3

1

Anything you write down as a finite decimal can always be expressed as
such a fraction.

4.7513 =
47513

10000
∈ Q

3(until taking your first class in complex numbers)

28

In fact, even infinite but repeating decimals (like 5.6666666 . . . or 8.123123123 . . .)
are always rational. “Irrational” numbers are simply those not included
in the rational set, like

√
2 /∈ Q. Fans of irrationals must go elsewhere.

π, e, φ /∈ Q

• “Exponentiation” or “raising a number to the power of another” means
repeated multiplication with itself.

a3 = a× a× a

The exponent doesn’t need to be positive:

a−3 =
1

a3
=

1

a× a× a

The exponent doesn’t even need to be an integer...

4−π ≈ 0.0128402

... but its definition is a closely guarded secret4.

An “exponential” refers to a function of a variable which is an exponent.

f(x) = 7x

• The “logarithm” is the inverse function of the exponential. It can be simply
understood as the function which, when given values a and b related by

a = bc

will return the unknown power c

c = logb(a)

• The “factorial” of a natural number is the product of itself and all smaller
natural numbers (excluding zero)

5! = 5× 4× 3× 2× 1

n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1

We also define
0! = 1

just because

4(until your first class in calculus)

29

Factorials grow very fast meaning that x! (for a big integer x ∈ N) will
typically be much bigger than a polynomial (like 2x3) or an exponential
(like 4x). For example, when x = 30,

2x3 = 54, 000

4x = 1, 152, 921, 504, 606, 846, 976

x! = 265, 252, 859, 812, 191, 058, 636, 308, 480, 000, 000

• A “real interval” is a subset of the real set written as

[a, b] ⊂ R

and contains all numbers between a ∈ R and b ∈ R (inclusive). For
example

5.2 ∈ [4, 6.5]

3 /∈ [4, 6.5]

Round brackets indicate that end number is not included in the subset,
but every real number right up to it remains included.

6.4 ∈ [4, 6.5)

6.4999999 ∈ [4, 6.5)

6.5 /∈ [4, 6.5)

4 /∈ (4, 6.5)

• An “integer interval” is a subset of the integers

[a..b] = {a, a+ 1, a+ 2, a+ 3, . . . , b− 2, b− 1, b}

where a, b ∈ Z (and assuming b is the larger integer). For example

[3..8] = {3, 4, 5, 6, 7, 8}
[3..8) = {3, 4, 5, 6, 7}
(3..8) = {4, 5, 6, 7}

This notation is less ubiquitous than that for real intervals, so is sometimes
instead expressed as an intersection of a real interval and the integers.

[a..b) = [a, b) ∪ N

30

6 Review answers

1.

1250322227 = 1 · 78 + 2 · 77 + 5 · 76 + 0 · 75 + 3 · 74 + 2 · 732 · 72 + 2 · 71 + 2 · 70

= 800813510

2.

number of base 6 digits = 1 + blog6(nA)c

= 1 + b log10(nA)

log10(6)
c

= 1 + b log10(6.022× 1023)

log10(6)
c

= 31

3.

45A9F1216 × (164)10 = 45A9F12000016

because multiplication with a power of the base merely shifts the digits
by the power.

4. The aliens use 18 unique numeral symbols, implying a base B = 18 system.
The number of unique k = 5 digit numerals (i.e. phone numbers) is then

Bk = 185 = 188956810

The odds of calling the correct number are thus

1

1889568
≈ 5.3× 10−7

5. The great potential value of numeral

Í¢¢Ôts18

assumes the five unique symbols above are the five largest value symbols,
ordered in decreasing value. I.e.

Í18 = 1710

¢18 = 1610

Ô18 = 1510

t18 = 1410

s18 = 1310

The number then encodes number

Í¢¢Ôts18 = 17 · 185 + 16 · 184 + 16 · 183 + 15 · 182 + 14 · 181 + 13 · 180

= 33, 900, 70910

31

6. The maximum k-digit base-B numeral, where the decimal seperator occurs
after the second left-most digit, has value:

[B − 1][B − 1].[B − 1][B − 1][B − 1]· · ·[B − 1]B

where there are k − 2 digits after the dot point. This means that the
epsilon, or the gap between k-digit numbers of this form, is

ε = Bk−2.

The next numeral from that above is k + 1 digits:

[1][0][0].[0][0][0]· · ·[0]B

and has value B2. Hence, the original numeral encodes value:

B2 −Bk−2

7.

1 1 0011001100 110011

=−1.1100112 × 2−00110011002

=−
(
20 + 2−1 + 2−2 + 2−51 + 2−52

)
× 2−(22+23+26+27)

≈
(
−6.80642× 10−62

)
10

32

	Foreward
	Integers
	Base 10
	Base B
	Examples
	Combinations
	Extensions

	Decimals
	Dot point
	Rounding error
	Floating point
	Extensions

	Review questions
	Appendices
	Review answers

